## **CS 267 Applications of Parallel Computers**

**Lecture 11:** 

Sources of Parallelism and Locality (Part 3)

**Tricks with Trees** 

David H. Bailey

Based on previous notes by Jim Demmel and Dave Culler

http://www.nersc.gov/~dhbailey/cs267

## **Recap of last lecture**

#### ° ODEs

- Sparse Matrix-vector multiplication
- Graph partitioning to balance load and minimize communication

#### ° PDEs

- Heat Equation and Poisson Equation
- Solving a certain special linear system T
- Many algorithms, ranging from
  - Dense Gaussian elimination, slow but very general, to
  - Multigrid, fast but only works on matrices like T

## **Outline**

- ° Continuation of PDEs
  - What do realistic meshes look like?
- ° Tricks with Trees

# Partial Differential Equations PDEs

## Poisson's equation in 1D

### ° Solve Tx=b where

$$T = \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & -1 & & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$$



## Poisson's equation in 2D

#### ° Solve Tx=b where

#### Graph and "stencil"



° 3D is analogous

# **Algorithms for 2D Poisson Equation with N unknowns**

| Algorithm                | Serial           | PRAM         | Memory           | #Procs         |
|--------------------------|------------------|--------------|------------------|----------------|
| ° Dense LU               | N <sup>3</sup>   | N            | N <sup>2</sup>   | N <sup>2</sup> |
| $^{\circ}$ Band LU       | $N^2$            | N            | N <sup>3/2</sup> | N              |
| ° Jacobi                 | N <sup>2</sup>   | N            | N                | N              |
| $^{\circ}$ Explicit Inv. | $N^2$            | log N        | $N^2$            | $N^2$          |
| $^{\circ}$ Conj.Grad.    | N <sup>3/2</sup> | N 1/2 *log N | N                | N              |
| $^{\circ}$ RB SOR        | N 3/2            | N 1/2        | N                | N              |
| $^\circ$ Sparse LU       | N 3/2            | N 1/2        | N*log N          | N              |
| ° FFT                    | N*log N          | log N        | N                | N              |
| ° Multigrid              | N                | log² N       | N                | N              |
| ° Lower bound            | N                | log N        | N                |                |

PRAM is an idealized parallel model with zero cost communication Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

## Mflop/s versus Run Time

- ° Problem: Iterative solver for a convection-diffusion problem; run on a 1024-CPU NCUBE-2.
- Reference: Shadid and Tuminaro, SIAM Parallel Processing Conference, March 1991.

| Solver               | Flops                 | <b>CPU Time</b> | Mflop/s |
|----------------------|-----------------------|-----------------|---------|
| Jacobi               | 3.82x10 <sup>12</sup> | 2124            | 1800    |
| Gauss-Seidel         | 1.21x10 <sup>12</sup> | 885             | 1365    |
| <b>Least Squares</b> | 2.59x10 <sup>11</sup> | 185             | 1400    |
| Multigrid            | 2.13x10 <sup>9</sup>  | 6.7             | 318     |

<sup>°</sup> Which solver would you select?

## Relation of Poisson's equation to Gravity, Electrostatics

- ° Force on particle at (x,y,z) due to particle at 0 is  $-(x,y,z)/r^3$ , where  $r = sqrt(x^2+y^2+z^2)$
- Force is also gradient of potential V = -1/r= -(d/dx V, d/dy V, d/dz V) = -grad V
- ° V satisfies Poisson's equation (try it!)

Relationship of Potential V and Force -grad V in 2D



## **Comments on practical meshes**

- ° Regular 1D, 2D, 3D meshes
  - Important as building blocks for more complicated meshes
- ° Practical meshes are often irregular
  - Composite meshes, consisting of multiple "bent" regular meshes joined at edges
  - Unstructured meshes, with arbitrary mesh points and connectivities
  - Adaptive meshes, which change resolution during solution process to put computational effort where needed

# Composite mesh from a mechanical structure



# **Converting the mesh to a matrix**



## **Effects of Ordering Rows and Columns on Gaussian Elimination**



# Irregular mesh: NASA Airfoil in 2D (direct solution)



# **Irregular mesh: Tapered Tube (multigrid)**

## Example of Prometheus meshes



Figure 6 Sample input grid and coarse grids

## **Adaptive Mesh Refinement (AMR)**



- °Adaptive mesh around an explosion
- °John Bell and Phil Colella at LBL (see class web page for URL)
- °Goal of Titanium is to make these algorithms easier to implement in parallel

## Challenges of irregular meshes (and a few solutions)

- ° How to generate them in the first place
  - Triangle, a 2D mesh partitioner by Jonathan Shewchuk
  - 3D harder!
- ° How to partition them
  - ParMetis, a parallel graph partitioner
- ° How to design iterative solvers
  - PETSc, a Portable Extensible Toolkit for Scientific Computing
  - Prometheus, a multigrid solver for finite element problems on irregular meshes
  - Titanium, a language to implement Adaptive Mesh Refinement
- ° How to design direct solvers
  - SuperLU, parallel sparse Gaussian elimination
- ° These are challenges to do sequentially, the more so in parallel

# **Tricks with Trees**

#### **Outline**

- ° A log n lower bound to compute any function in parallel
- ° Reduction and broadcast in O(log n) time
- Parallel prefix (scan) in O(log n) time
- Adding two n-bit integers in O(log n) time
- Multiplying n-by-n matrices in O(log n) time
- $^\circ$  Inverting n-by-n triangular matrices in O(log $^2$ n) time
- ° Inverting n-by-n dense matrices in O(log<sup>2</sup> n) time
- ° Evaluating arbitrary expressions in O(log n) time
- Evaluating recurrences in O(log n) time
- ° Solving n-by-n tridiagonal matrices in O(log n) time
- Traversing linked lists
- ° Computing minimal spanning trees
- Computing convex hulls of point sets

## A log n lower bound to compute any function of n variables

- Assume we can only use binary operations, one per time unit
- After 1 time unit, an output can only depend on two inputs
- Output can only depend on 2<sup>k</sup> inputs
- ° A binary tree performs such a computation



## **Broadcasts and Reductions on Trees**



## Binary Tree Addition on a Message Passing System

- Suppose we wish to compute the global sum of x\_i, contained on processor i. Assume N = 2^n processors.
- ° Algorithm on processor kp, 0 <= kp < n:
- $^{\circ}$  do for k = 0 to m 1:
  - Compute ip := ieor (kp, 2^k)
  - Send current x to processor ip.
  - Receive s from processor ip.
  - x := x + s
- ° enddo
- ° At completion of loop, processor 0 has global sum.
- ° This scheme can be easily generalized to nonpower-of-two processor counts and to more general arrays.

## **Parallel Prefix, or Scan**

° If "+" is an associative operator, and x[0],...,x[p-1] are input data then parallel prefix operation computes

$$y[j] = x[0] + x[1] + ... + x[j]$$
 for  $j=0,1,...,p-1$ 

Notation: j:k mean x[j]+x[j+1]+...+x[k], blue is final value



## **Mapping Parallel Prefix onto a Tree - Details**

- Up-the-tree phase (from leaves to root)
  - 1) Get values L and R from left and right children
  - 2) Save L in a local register M
  - 3) Pass sum S = L+R to parent
- Down the tree phase (from root to leaves)
  - 1) Get value S from parent (the root gets 0)
  - 2) Send S to the left child
  - 3) Send S + M to the right child
- $^{\circ}$  By induction, S = sum of all leaves to left of subtree rooted at the parent



## Adding two n-bit integers in O(log n) time

- ° Let a = a[n-1]a[n-2]...a[0] and b = b[n-1]b[n-2]...b[0] be two n-bit binary numbers
- ° We want their sum s = a+b = s[n]s[n-1]...s[0]

```
c[-1] = 0 ... rightmost carry bit
for i = 0 to n-1
c[i] = ( (a[i] xor b[i]) and c[i-1] ) or ( a[i] and b[i] ) ... next carry bit
s[i] = a[i] xor b[i] xor c[i-1]
```

° Challenge: compute all c[i] in O(log n) time via parallel prefix

for all 
$$(0 \le i \le n-1)$$
  $p[i] = a[i]$  xor  $b[i]$  ... propagate bit for all  $(0 \le i \le n-1)$   $g[i] = a[i]$  and  $b[i]$  ... generate bit

$$\begin{bmatrix} c[i] \\ 1 \end{bmatrix} = \begin{bmatrix} (p[i] \text{ and } c[i-1]) \text{ or } g[i] \\ 1 \end{bmatrix} = \begin{bmatrix} p[i] & g[i] \\ 0 & 1 \end{bmatrix} * \begin{bmatrix} c[i-1] \\ 1 \end{bmatrix} = C[i] * \begin{bmatrix} c[i-1] \\ 1 \end{bmatrix}$$

... 2-by-2 Boolean matrix multiplication (associative)

= 
$$C[i] * C[i-1] * ... C[0] * \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
  
... evaluate each  $P[i] = C[i] * C[i-1] * ... * C[0]$  by parallel prefix

° Used in all computers to implement addition - Carry look-ahead

## Multiplying n-by-n matrices in O(log n) time

- ° For all (1 <= i,j,k <= n) P(i,j,k) = A(i,k) \* B(k,j)
  - cost = 1 time unit, using n^3 processors

° For all (1 <= I,j <= n) 
$$C(i,j) = \sum_{k=1}^{n} P(i,j,k)$$

cost = O(log n) time, using a tree with n^3 / 2 processors

## Inverting triangular n-by-n matrices in O(log<sup>2</sup> n) time

Function Trilnv(T) ... assume n = dim(T) = 2<sup>m</sup> for simplicity

If T is 1-by-1
return 1/T
else
... Write T = A 0
C B

In parallel do {
invA = Trilnv(A)
invB = Trilnv(B) } ... implicitly uses a tree

newC = -invB \* C \* invA
Return invA 0
newC invB

- o time(TriInv(n)) = time(TriInv(n/2)) + O(log(n))
  - Change variable to m = log n to get time(Trilnv(n)) = O(log²n)

# **Inverting Dense n-by-n matrices in O(log<sup>2</sup> n) time**

## ° Lemma 1: Cayley-Hamilton Theorem

expression for A<sup>-1</sup> via characteristic polynomial in A

#### ° Lemma 2: Newton's Identities

Triangular system of equations for coefficients of characteristic polynomial

° Lemma 3: trace(
$$A^k$$
) =  $\sum_{i=1}^n A^k$  [i,i] =  $\sum_{i=1}^n [\lambda_i] (A)$ ]

° Csanky's Algorithm (1976)

- 1) Compute the powers A<sup>2</sup>, A<sup>3</sup>, ...,A<sup>n-1</sup> by parallel prefix cost = O(log<sup>2</sup> n)
- 2) Compute the traces  $s_k = trace(A^k)$ cost = O(log n)
- 3) Solve Newton identities for coefficients of characteristic polynomial cost = O(log<sup>2</sup> n)
- 4) Evaluate A<sup>-1</sup> using Cayley-Hamilton Theorem cost = O(log n)

# Completely numerically unstable

## **Evaluating arbitrary expressions**

- ° Let E be an arbitrary expression formed from +, -, \*, /, parentheses, and n variables, where each appearance of each variable is counted separately
- ° Can think of E as arbitrary expression tree with n leaves (the variables) and internal nodes labelled by +, -, \* and /
- ° Theorem (Brent): E can be evaluated in O(log n) time, if we reorganize it using laws of commutativity, associativity and distributivity
- Sketch of (modern) proof: evaluate expression tree E greedily by
  - collapsing all leaves into their parents at each time step
  - evaluating all "chains" in E with parallel prefix

## **Evaluating recurrences**

- ° Let  $x_i = f_i(x_{i-1})$ ,  $f_i$  a rational function,  $x_0$  given
- ° How fast can we compute x<sub>n</sub>?
- ° Theorem (Kung): Suppose degree(f<sub>i</sub>) = d for all i
  - If d=1, x<sub>n</sub> can be evaluated in O(log n) using parallel prefix
  - If d>1, evaluating  $x_n$  takes  $\Omega(n)$  time, i.e. no speedup is possible

## ° Sketch of proof when d=1

$$\begin{aligned} x_i &= f_i(x_{i-1}) = (\bar{a}_i * x_{i-1} + b_i) / (c_i * x_{i-1} + d_i) & \text{can be written as} \\ x_i &= \text{num}_i / \text{den}_i = (a_i * \text{num}_{i-1} + b_i * \text{den}_{i-1}) / (c_i * \text{num}_{i-1} + d_i * \text{den}_{i-1}) & \text{or} \\ \left[ \begin{matrix} \text{num}_i \\ \text{dem}_i \end{matrix} \right] &= \left[ \begin{matrix} a_i & b_i \\ c_i & d_i \end{matrix} \right] * \left[ \begin{matrix} \text{num}_{i-1} \\ \text{den}_{i-1} \end{matrix} \right] &= M_i * M_{i-1} * \dots * M_1 * \left[ \begin{matrix} \text{num}_0 \\ \text{den}_0 \end{matrix} \right] \end{aligned}$$

Can use parallel prefix with 2-by-2 matrix multiplication

# ° Sketch of proof when d>1

- degree(x<sub>i</sub>) as a function of x<sub>0</sub> is d<sup>i</sup>
- After k parallel steps, degree(anything) <= 2<sup>k</sup>
- Computing  $x_i$  take  $\Omega(i)$  steps

## **Summary of tree algorithms**

- ° Lots of problems can be done quickly in theory using trees
- Some algorithms are widely used
  - broadcasts, reductions, parallel prefix
  - carry look ahead addition
- ° Some are of theoretical interest only
  - Csanky's method for matrix inversion
  - Solving general tridiagonals (without pivoting)
  - Both numerically unstable
  - Csanky needs too many processors
- Embedded in various systems
  - CM-5 hardware control network
  - MPI, Split-C, Titanium, NESL, other languages